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Through an extension of the concept of scale invariance we construct two invariance 
transformations of the equations of gasdynamics: the first is a true Backlund 
transformation, and as such we expect that  it should play an important role in the 
search for new cases of integrability; the other one affects the shape of the entropy 
profile, implying that the mathematical problems of isentropic and non-isentropic 
flow are, a t  least in some cases, equivalent. 

That property enables us to deduce the general solution in closed form, assuming 
a power-law entropy profile of the form P/pY x l/WY-l, where M is the Lagrangian 
mass coordinate. 

1. Introduction 
The equations of gasdynamics have the well-known property of being invariant 

under scale transformations, as a consequence of their homogeneity. This property 
has many important and useful consequences, which have already been extensively 
discussed in the literature (e.g. Sedov 1959), such as the existence of so-called 
self-similar solutions, or the fact that any given flow may be completely characterized - 
up to  the arbitrariness in the choice of units - by a set of purely dimensionless field 
variables. We present an extension of this concept of scale invariance, in which each 
element of fluid is assumed to ‘carry with i t ’  its own system of units; this is a natural 
generalization to consider, since in the macroscopic picture each fluid element moves 
without ever mixing with the others. The resulting symmetry of the Euler equations, 
presented in 5 2, has new and interesting properties and leads us to the general solution 
of the equations in closed form, in a case characterized by a non-uniform entropy 
distribution ($4). 

There is one more symmetry (53.3) of the Euler equations that may be found 
through an extension of the concept of scale invariance; we derive i t  through the 
consideration of time-dependent systems of units, rather than space-dependent as 
above. That new symmetry does not alter the entropy distribution, and thus 
constitutes a Backlund transformation of the hydrodynamical equations. Its existence 
raises the hope of finding new cases of integrability; i t  also suggests that the search 
for Riemann invariants should play a crucial role for that  purpose. We show in fact 
in $ 5  that  the data of a single Riemann invariant is sufficient in order to obtain a t  
least a formal solution of the equations, as a result of the existence of the Backlund 
transformation. 



180 B.  Gaffet 

2. Microscopic description of the symmetry 
2.1. The case of gasdynamics, without external forces 

We consider here the one-dimensional motion of a fluid, which we do not a priori 
constrain to be ideal or polytropic. A mass element may be labelled by the Lagrangian 
coordinate M, which represents the total mass enclosed between that element and 
another arbitrarily chosen as origin. With obvious notations, we have the following 
differential expression for M :  

dM = p(dr-vdt). (2.1) 

The associated integrability condition is called the continuity equation : 

We now rescale the fundamental units of mass, 
factors p’, s, T that are explicitly dependent upon 

a p  
d M  = p’(M) dM, - = s ( M ) ,  

ar 

length and time, through scaling 
the Lagrangian coordinate M: 

d 1 d  
dF ~ ( M ) d t ’  
- = -- (2.3a, b ,  c) 

where a bar denotes transformed quantities; this transformation will be denoted by 
(T). The symbol d/dt has here its usual meaning of a derivative taken at constant 
M, so that the condition ( 2 . 3 ~ )  is equivalent to the statement that E(M, t )  is a linear 
function of time. 

In the simple case where T is chosen to be constant, the following integrated 
formulae hold : 

(2.4a, b,  c) 
M 

M =  p ( M ) ,  C =  rt, F = [M_os(M)dr+R(t). 

The transformed velocity v E dr/df and acceleration g = de/dC read 

M 

7 ~ =  JoM s(M)dw+&(t), r2g= s(M)dg+#(t) (2.5a, b )  

(where g is the acceleration field), as may be shown through use of the continuity 
equation; the transformed density is 

The Euler equation of motion reads, in the new reference frame, 

and serves to determine the transformed pressure P :  

or, taking account of the original Euler equation (P = -J:gdM), 

where the integral is taken at fixed t .  
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The only condition needed for the above transformation to produce a physically 
be compatible with the acceptable flow is that the transformed variables 1”; p ,  

equation of state of a realistic fluid. 
As a particularly interesting instance, we propose the solution 

s (M)  = - r 2 M ,  p ( M )  = 1/M, (2.9a, b )  

from which we derive 
P =  P / M ,  # ( t )  = -r2PO(t), (2.10a, b) 

where Po(t) E P(M = 0, t ) .  
Equation (2 .9)  ( g  = 1/M) shows the symmetrical nature of (T), in the sense that 

the product of (T) by itself is the identity. In  order to make it more readily apparent, 
we choose the normalization constant r = - 1, which produces the following set of 
transformation formulae : 

M (Z.11) 
p = -  JM_,  Mdr+R(t),  B = + J r M d v - & ( t ) ,  

with # ( t )  = - Po(t). 

The above solution has the essential property that the polytropic equation of state 

d l o g P  dlogp -- 
dt - Y d t  

(2.12) 

remains invariant ; therefore (T) is an invariance transformation (a symmetry) of the 
Euler equations of one-dimensional gasdynamics. It has the very remarkable and 
unique property of transforming a given distribution of entropy into another of a 
diflerent shape; namely, the entropy being the logarithm of u, 

a ( M )  = P/pY, (2.13) 

we have the following transformation formula : 

@(M) = W y - l r ~ ( M ) .  (2.14) 

In  particular, an isentropic distribution (a  = constant) gives rise to a power-law - - 
entropy profile : 

a ( M )  z l /Mb (2.15) 

with an ‘entropy index’ b = 3y-  1. That fundamental property will enable us to 
deduce the general solution of the Euler equations in closed form ( $ 4 )  for such entropy 

u ( M )  % l/M37-1. (2.16) 
distributions : 

2.2. Microscopic description, and generalization 

It is essential to notice the following generalization. Considered from the microscopic 
level where the Lagrangian coordinate M is an absolute constant (the diffusion 
processes being here neglected), the above-described transformation reduces to an 
ordinary time-independent change of the fundamental units, and therefore preserves the 
form of the fundamental laws of mechanics. Both coordinate systems are inertial: the 
average accelerations 9, g of a small bunch of particles are merely the result of 
collisions with particles belonging to the neighbouring elements, and have the value 
predicted by Newton’s second law, since both Euler equations are satisfied. 
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Then, if other forces - such as viscosity, gravitation, etc. - were present, the above 
transformation would still constitute an invariance transformation of the more complex 
system of equations - except for a possible M-dependent rescaling of the extra forces, 
if their strength is determined by a dimensional constant, such as the gravitational 
constant G.  

I n  the pure case of gasdynamics, without any forces other than pressure, no such 
dimensional constant occurs, and the transformation is thus an exact invariance 
transformation. 

3. Characteristic equations, and conservation laws 
3.1. Characteristic form of the Euler equations 

The characteristic formulation of the equations is a basic tool in any analytical study 
in hydrodynamics; we need i t  in particular in $ 5 ,  where we solve the equations by 
the method of Riemann invariants, which are a particular set of characteristic 
coordinates. We refer the reader to Courant & Friedrichs (1948) for the method of 
derivation, given the one-dimensional Euler equations 

av dlogp dv aP P 
ar dt dt par PY 
-+----- = 0, -+-=O, -= u ( M ) ,  

and merely indicate the result (3.1 a, b,  c) 

a,r = (v-c)a,t, a,r = (v+c)a,t, (3.2a, b )  

a, Y = - - U a , t ,  ap y/ = + c ~  a p t ,  (3.4a, b )  

with u = ( Y + 1 ) / ( 7 - 1 ) .  

Here a, /3 are the characteristic coordinates, a, and 3, denote the partial derivatives 
a/aa and a/ap, c = ( yP /p ) i  is the sound velocity, and Y is a function of M ,  or of c, 
defined as 

Y = (yc)'/(Y-') dM, (3 *5 1 

ay 
= 0. 

d Y  _ -  - (y-1 - 
ar ' dt 

s 
or, equivalently, 

It is worth noticing the following relation, involving the pressure P :  

y-  1 McV/!Y-1) 
Y =  - 

Y(Y-1-b) P . 

I n  terms of M instead of Y,  the characteristic equations (3.4) read 

a,M=-pca,t, a,M=+pca,t. 

We will sometimes refer to (3.2), (3.3) and (3.4) as the first, second and third group 

The condition (3.5) expresses that Y is a function of u, whence the differential 
of characteristic equations respectively. 

(3.7) 
relation 

Equation (3.7) is a consequence of the system (3.2)-(3.4), which is thus of 5th order 
(with 5 unknowns: r ,  t ,  u, c ,  c). 

a, y a p  = a, Fa, u. 
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The original Euler equations (3.1) form a system of the 3rd order only; the increase 
in order (from 3rd t o  5th) is ascribable to  the introduction of characteristic 
coordinates, which are only defined up to a gauge transformation of the form 

a+a* = #(a) ,  p+p* = $(p), (3.8a, b )  

(where # and + are arbitrary functions), as is easily seen from the form of the 
characteristic equations. This fundamental property will be again considered in 55.1. 

The first group of equations has an obvious physical meaning: it defines the 
characteristic curves as the trajectories of ‘ small-amplitude perturbations ’, which are 
known t o  propagate at the velocity of sound c. We may also note that the second 
members of the three pairs of equations (I, 11, 111), i.e. those involving the partial 
derivative spa, may be deduced from the other equations by exchanging a and p, and 
changing the signs of c and Y only. 

3.2. Conservation laws 

I n  one-dimensional problems, conservation laws assume the general form 

a j E  aPE -+- = 0, ar at 

where j,, pE are a priori arbitrary expressions defined in terms of physical variables, 
such as r ,  t, P, v, p, c ;  this formulation may be called Eulerian since the independent 
variables are r and t .  I ts  form is that of a Cauchy integrability condition, of a quantity 
A defined by the pair of equations: 

A may be called the conserved quantity, and jE, pE are its (Eulerian) current and 
density. 

The most compact way to formulate a conservation law (for a conserved quantity 
A ) ,  however, is usually through the Lagrangian formalism : defining the ‘ Lagrangian 
current’ as jL[A] = -dA/dt and the Lagrangian density as pL[A] = BA/BM, the 
conservation law reads 

@L dPL -+- = 0. 
aM dt (3.9) 

Taking account of the continuity equation, (3.9) is shown to be equivalent to the usual 
Eulerian formulation : 

(3.10) - ( j ~  + PWPL) + t (PPL) = 0. 
a a 
ar 

The currents and densities of momentum 17 and energy E thus read 

(3.11) 

These expressions determine 17 and E,  up to an arbitrary additive constant. 

through the formulae 
The ‘characteristic formulation ’ (of a conservation law) is most easily derived 

(3.12a, b)  
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We thus obtain the following expression for the differential of 17: 

and, taking account of the characteristic equation (3.4), written in the form 
a, M = -pea, t ,  together with the identity y P  = pc2, we have 

(3.13a, b )  

(we recall that the P-derivative is obtained by changing c into - c ) .  In the same way 
we find, for the differentials of E ,  

(3.14a,b) 

Having established the above general results (valid for arbitrary entropy distribution), 
we now address the fundamental question of whether new conservation laws arise 
as a consequence of the existence of the symmetry. By this we mean the following: 
since (T) is an invariance transformation of the Euler equations, and the conserved 
quantities 17 and E are known to exist, the transformed quantities n, E also exist, 
i.e. their Cauchy integrability conditions are satisfied. Then n, ,!? either are 
expressible in terms of 17, E and of the physical variables r ,  t ,  P, etc., or else are 
independent quantities. In  the latter case n, E constitute new conservation laws, 
whereas in the former no new conservation laws arise as a result of the symmetry. 

In  the present case the answer is provided by the fundamental transformation 
formula 

B = MV-17, (3.15) 

which may be proved as follows. According to (2.11), the definition of fi reads 

B = JoM Mdv-R(t), 

where R(t)  = - Po(t) ; hence Mw - B = jy w dM + @ t ) .  Therefore 

a( MV - V) 
= v, 

aM 

d(Mv-V) = Jr$dH+&t)  = J r - g d M + & ( t )  = Po(t)-P+#(t) = --P 
dt 

Thus Mu-@ and 17, having the same partial derivatives, can differ at most by a 
constant. The constant can always be assumed to be zero, since 17 itself is only 
determined up to an additive constant. 

Owing to the ‘symmetrical’ nature of the operator (i.e. (T)2 = 1)  we deduce, 
applying (3.15) once again, 

2, = zu-n, (3.16) 
and, since z= 1/M, 

i7 = - n / M .  (3.17) 

It may similarly be shown that the energy E is related to E in a simple way: 

(3.18) 
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or, in a manifestly symmetrical way, 

E+E++l7n= 0. (3.19) 

Thus no new conservation laws are introduced by the symmetry (T) ; still, it is quite 
interesting and unexpected that such simple relations should hold between the 
energy, momentum and their transformed quantities, in spite of the non-local nature 
of the transformation formulae (2.1 l ) ,  which involve integrals. 

In  addition, it ought to be noticed that the momentum-conservation law itself may 
be viewed as a consequence of the symmetry (T) ; since the existence of li’ is proved by 
the (T)-transformation formula (3.15) (I7 = Mv-@) .  

3.3. A Bkklund transformation of the monatomic gas-$ow equations 
We have already discussed in an earlier work (Gaffet 1981) another symmetry of the 
Euler equations, which we denoted by (T*); i t  holds for ‘monatomic’ gas flow only, 
that  is to say, when the polytropic index takes the value 

Y = Ymon = ( N + 2 ) / N  (3.20) 

in a space of dimension N .  The basic transformation formulae read, for all N ,  

together with 

r 
t ’  

r* = -_ v* = v t -r ,  c* = ct, I 
p* = pp+2, p* = ptN, 

(3.21) 

where a star denotes transformed quantities. (T*) is a ‘symmetry’ too (i.e. (T*)2 is 
the identity), and a Biicklund transformation of the Euler equations. It does yield a 
new conservation law, that of energy E*, which has the following current and density: 

jL(E*) = Pt(vt-r) ,  ( 3 . 2 2 ~ )  

pL(E*) = g ( v 2  +$9) t2  - 2rvt + r2).  (3.22 b )  

The conservation law reads, in standard Eulerian formalism, 

a a 
ar at 
-p{(v2 + c 2 )  vt2 - 2(v2 +b2) rt + vr’} +-p{(v2 +b2) t2 -2vrt +r2}  = 0,  (3.23) 

which might be considered a rather cumbersome formula, although much more 
complicated ones do occur in mathematical physics (see e.g. Landau & Lifschitz 1971, 
p. 306 equation (101.6)). It ought to be remarked that the degree of simplicity with 
which a conservation law may be formulated does not constitute a measure of its 
usefulness : its importance lies in that it provides an exact integral of the equations, in 
closed form. In the present case, (3.23) enables one to calculate the integral 
jzpL[E*]dM = E*(B)-E*(A) exactly when the time evolution of the relevant 
physical data a t  the boundaries A,  B is given. In  the same way, the energy-conservation 
law enables one to calculate E(B, t ) -  E(A, t )  at any time t ,  when the energy fluxes 
are given as functions of time a t  the boundaries A ,  B. 

Finally, we note that the momentum 17* may be expressed in terms of the position 
coordinate ?: 

lI* = p+Mr-I7t, (3.24) 
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as may be shown by comparing their differentials ; this result comes from the fact 
that  both I7* and 7 are connected with the centre-of-mass motion (see (2 .11)) .  
Formally, it is a consequence of the commutativity of the two operators: 

(T) (T*) s (T*) (T). (3 .25)  

4. General solutions 
We recall that  the pressure of a non-relativistic gas in a space of dimension N is 

related to the energy density of transZationaZ motion ut by P = (2,”) u,, and to the 
total energy density u by the polytropic law P = (y-  1 )  u,  where y is the adiabatic 
index; we thus have, for a monatomic gas, 

Ymon = ( N + B ) / N .  14.1 1 
In  a one-dimensional space, which is the case we consider in the present paper, the 
monatomic index is thus y = 3, although in three dimensions i t  takes the more 
familiar value y = Q.  For a molecular gas with n rotational degrees of freedom, the . .  
equipartition principle predicts for - the ratio of energy densities the value 
ut/u = n/(n+ N ) ,  so that 

y = 1 + 2 / ( n + N ) .  (4 .2 )  

Thus the classical theory predicts an adiabatic index of the general form 

Y = @ + 2 ) / P ,  (4 .3 )  

where p is an integer - the total number of degrees of freedom of the gas molecule. 
As we shall see, the above values of y are also those for which some particularly 
interesting analytical results are available (54.2) .  

4 .1 .  The case of monatomic g a s j o w  ( y  = 3 )  

We first consider the monatomic index ( y  = 3) ,  which yields the simplest and most 
symmetrical results; the general solution may be set in the following form, if the flow 
is assumed isentropic (see $5.1 and Landau & Lifshitz 1959):  

( v + c ) t - r  = $(v+c), ( v - c ) t - r  = @(v-c) ,  (4 .4a ,  b )  

which determines - though implicitly - v and c versus r and t coordinates, in terms 
of two arbitrary functions $ and @, The Riemann invariants I* ,  which have the 
general expression I* = v + 2 c / ( y - l )  (see $ 5 . 1 ) ,  are here v+c and w-c. Choosing as 
characteristic coordinates 

the general solution (4 .4 )  reads - solving for r ,  t and introducing new functions f 

a = S(v+c) ,  p = +(v-c), (4 .5 )  

and g:  

(4 .6a ,  b )  

wheref and g’ denote the ordinary derivatives of f(a) and g ( P ) .  
The mass M ,  momentum lI and energy E may be obtained by quadrature from 

(3 .4 ) ,  (3.13) and (3 .14)  respectively; each integration can be performed in closed form, 
and we find 

(4 .7 )  

(4 .8)  

M = !P = 2 ( f - g ) +  (P-a) ( f + g ’ ) ,  

an = (4 --F) - (Pg- G )  +&@-a) [ ( 2 a + P ) P  + (2P+ a )  9’3, 

where F and G are the primitives j f d a  and j g d/3 respectively 
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The derivation of the general solution for the case of an entropy index b = 3y- 1 
(see (2.16)) is now straightforward, as it is connected to the isentropic solution by 
the symmetry (T). From the transformation formulae (2.11) we have 

(4.9a) 

(4.9b) 

c = @-P, P(f - 9 )  + ( P - 4  (f +g’)l (4.9c) 

without any calculation. The velocity v may be found by quadrature from the second 
group of characteristic equations (3.3), but we may obtain i t  without integration 
through the transformation formula (3.15) and the expression (4.8) for the 
momentum : 

v = 4(F-G)+2(/3--) ( f + g ) + + ( P - a ) 2  (f-9’). (4.10) 

The position coordinate r ,  which is determined by the first group of equations 
((3.2)), may also be deduced without integration through the use of (3.24), where IT* 
itself is deducible from expression (4.8) by a method developed in $5.1 ; we thus find 

where F* and G* are defined as follows: 

-ff (4.12 a) 

(4.12b) 
G*(B) = 2( 1 Sg”d/3+~g”)-gg’. 

The occurrence of the integrals j f da and jg’2 d/3 will be interpreted in $5.1. 

4.2. A new symmetry connecting the flows of two different fluids (y $; y ’ )  

We now present an explicit transformation (denoted by (T,)) that has the remarkable 
property of connecting a flow characterized by an adiabatic index y to the flow of 
anotherfluid, of index y’ = 2- l / y  ; the transformation applies to the case of entropy 
distributions of the form (2.16), which we are considering in the present section. 
Comparing with (4.3), we note that that transformation is also characterized by the 
relation 

p ’ = p + 2 ,  (4.13) 

showing that (T,) effectively adds on two degrees of freedom to the gas molecules. We 
do not elaborate about the meaning - if any - of that property, and proceed to give 
the mathematical definition and properties of (T+). 

The transformation is defined through the formulae 

(4.14) 

and relates a flow of polytropic index y ,  entropy index b = 3y- 1,  to the flow of 
another fluid with indices y’ = (2y- l) /y,  b‘ = 3y‘- 1 .  It is remarkable that the 

1 
P’ V 

M =-, C’ = MVC, , 1  t =-  

P L M  134 I 
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resulting transformation law for the velocity field may be obtained i n  closed form too ; 
it  reads 

(4.15) 

where E is the energy, defined up to an additive constant by its differentials ((3.14)). 
The transformed pressure is then 

- Mc2P P =  
YY‘V . 

(4.16) 

In order to show that the functions P ,  v’ of variables M’, t’ really satisfy the Euler 
equations for a fluid of index y‘, we first observe that the partial derivatives a / a M ,  
a/at‘ ,  coincide with: -v2(a/3v) I p ,  -P(a /aP)  12, respectively; so that our first task is 
to express these derivatives in more standard form. We find? 

where the Jacobian A is 
a p a v  ap av 
aMat at a i r  

A = (4.18) 

Substituting v‘, P ,  etc. from the transformation formulae (4.14)-(4.16), we find that 

-+--- - 0  avf cf2 a p  
aw y ’ 2 P 2  at’ 

the continuity equation 

goes over into the Euler equation 
av ap -+- = 0, 
at aM 

and similarly that the transformed Euler equation reduces to the continuity equation 
for the original fluid. Finally one can easily check from (4.14)-(4.16) that the adiabatic 
equation of state is satisfied too, with the new choice of indices y’ = (2y-l)/y,  
b‘ = 3y‘-1. That completes the proof that the transformed flow is physically 
realizable, and obeys the Euler equations of a fluid with index y’, different from 
y.  The question of the fitting of the boundary conditions will be discussed in 34.4. 

Let us mention finally that the momentum nl, which is determined through its 
differentials ((3.13)), is obtainable in closed form too: 

(4.19) 

4.3. Case of a polytrope y = Q 
Starting from the general solution derived in 84.1 for the case y = 3 (b  = 8) ,  the 
transformation formulae derived in 34.2 at once yield the solution corresponding to 
the new choice of indices y = Q (b  = 4). It reads 

I (4.20) 

t Hereinafter the symbol a/at indicates the partial derivative at constant M ,  denoted by d/dt 
in the preceding sections. 
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with 

The velocity v is given by 

V f 12(F-G)+6(P-a) (f+g)+(/3-a)2(f’-g’).  

189 

$ = 120(@--r) + 60(p-a) (F+ G) + 12(/3--01)’ ( f  - g )  + ( P - c x ) ~  (f’ +g’), (4.21) 

where we have introduced, in addition to  the primitives F and G, 

@ =  Fda, r= Gdp. s s 
The momentum n, as given by (4.19), reads 

-iVIZ = 60[(aF- @) - (PG-r)] + 3(P-a) [(701+ 3p) f + (3a+ 78) g ]  
+ (p- a)2 [(3a + 2p)f - (2a + 3p) 9‘1. (4.22) 

Further application of the operator (T,) yields the general solutions corresponding 
to indices y = 0 ,  +, etc. (with entropy index b = 3y- 1) .  

I n  conclusion, we should stress the remarkable fact that  (T,) does not establish 
a correspondence between particles, i.e. between mass elements, of the two fluids since 
M is not a function of M only ((4.14)). In  other words, the Lagrangian coordinate 
M does not remain Lugrangian by that transformation. 

4.4. Practical applications 

Before discussing a few concrete applications of the present results, the following two 
general remarks are in order. The first is that  in this work we deal with general 
symmetries of the Euler equations, with arbitrary entropy distribution (with the 
exception of the transformation (T+), considered in $4.2, which is only valid for a 
special class of entropy profiles). These symmetries are used for deriving some quite 
general results concerning the form of the solution ($5). I n  addition, we obtain the 
general solution of the Euler equations in closed form, for the special class of entropy 
distributions. As usual with partial differential systems of the second order, the 
general solution involves two arbitrary functions (here denoted f ( a )  and g ( p ) ) ,  and 
any combination of initial or boundary conditions can be met, through an appropriate 
choice of the two functions; thus the problem of determining the solution to any 
concrete, particular problem is reduced to  that of determining two functions of a 
single variable, a much simpler numerical task than the original one: to  determine 
a function of two variables, e.g. p( r ,  t ) .  

It is, however, interesting to see whether the solution of a given concrete problem 
transforms, under the symmetries (T*), (T) or (T+), into another solution of practical 
interest ; we shall address that question later in the present subsection. 

This brings us to the second remark, which is that  our main purpose in studying 
symmetries is not just to relate two or several different solutions by means of the 
symmetry ; i t  is just that no fundamental understanding of the equations can be claimed 
before all their symmetries are well understood. Thus, the reason why e.g. Lorentz 
transformations are important is not so much that they can be used to  generate new 
solutions; it is merely that they are important in their own right; they bring about 
covariance and analytical simplicity. That having been said, we now proceed to 
discuss some practical applications of our results. 

4.4.1. Applications of the transformation (T*) 
One of the main results is that  (T*) brings about a new conservation law : that of 

E*. Its  practical importance was discussed in $3.3, together with its definition (3.23). 
7-2 
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Broadly speaking, (T*) seems particularly useful for dealing with the problems of 
gasdynamics in an expanding background; that is to say, boundary conditions that 
describe a stationary background are transformed into the boundary conditions that 
are relevant for an expanding background. Thus (recalling that (T*) applies in any 
number of dimensions), interesting applications occur in astrophysical contexts such 
as multiple supernova explosions, or galactic explosions on a Hubble-flow cosmological 
background, a problem considered by Schwarz, Ostriker & Yahil (1975) ; the latter 
problem has been discussed by means of the transformation (T*) in Gaffet (1981). 

4.4.2. Applications of the transformation (T) 
The existence of a general solution in closed form for the entropy distribution 

P/pY w 1 / M 3 y - 1  ( (2 .16) )  may find practical applications. In particular, problems 
involving strong shock propagation frequently result in a power-law deposition of 
entropy of the above form, although the power-law index need not coincide with that 
in (2.16) ; if i t  does, the subsequent evolution of the shock-heated gas will be described 
by the general solutions presented in 54. 

As a specialization of the above equation (2.16), the general solution for the case 
of a slowly varying entropy distribution P/pY = a,+sM (a, = constant, e+O)  is at 
once derived. 

A more interesting type of application results from the following circumstances : 
I show in a forthcoming paper (Gaffet 1982) the existence of an inJinite number of 
conservation laws when the equation of state assumes the form 

P w p3/M4. 

Then, by application of (T), one immediately generalizes the result to all entropy 
distributions of the general form 

P 3  
(a, + a,  M+a, W)4 

P X  (a,, a,, a2 are arbitrary constants). 

The above application illustrates the fact that the usefulness of a symmetry is not 
restricted to cases where the transformed boundary conditions are of any particular 
type. 

Let us finally point out that the transformed boundary conditions will not be simple 
in the case of (T), if they involve the position coordinate r or even the velocity v (see 
the transformation formulae (2.1 1 ) )  ; still, some degree of stability in the boundary 
conditions remains, at least in some cases: thus we note that the well-known 
energy-conserving Sedov-Taylor solutions (Sedov 1959) are transformed into other 
Sedov-Taylor solutions (with a different power-law index of the ambient density 
distribution). 

5. The general solution, through the construction of generalized Riemann 
invariants 

It was discovered by Riemann (1860) that the quantities 

2c 
I +  = Wf- 

Y - 1  

remain constant along ( C k )  characteristics, in the case of isentropic flow. They are 
called Riemann invariants (hereinafter denoted by RI) and constitute a particular 
set of characteristic coordinates a, p. No generalization to the non-isentropic case has 
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been known up to now, but we show in this section that a generalization does exist, 
at least when the entropy index takes the value b = 3y- 1 .  

5.1. Symmetrical nature of the general solution, expressed in terms of 
two pairs of Riemann invariants 

The symmetries (T*, T, T+, etc.) that we have considered in the present work all share 
in common with the Biicklund transformations (Forsyth 1959) the fundamental 
property that the set of characteristic curves remains globally invariant ; which 
implies that, given any RI pair I * ,  the new quantities 

K* = T*[I*] (5.2) 

K+ = +(I*), K- = T,@(I-), (5.3) 

are Riemann invariants too. We therefore have between I * ,  K* the relations 

where the data of the two functions 4, @ are arbitrary and serve to specify a given 
flow. 

The above equations (5.3) constitute a formal solution of the Euler equations; the 
data of a single RI  only (e.g. I+)  is needed in order to be able to write it down 
explicitly, since the other member of the pair ( I - )  is obtainable by changing c to -c, 
as observed in $3.1. 

The most striking application concerns the case of isentropic flow with y = 3, where 
the RIs are: I* = v f c ,  and the associated pair K* = ( v k c ) t - r ,  according to our 
transformation formulae (3.21). The general solution therefore reads (see (5.3)) 

(v+c) t - r  = +(w+c), (v -c ) t - r  = ~ ( v - c ) ,  (5.4a, b )  

which coincides with the result (4.4) already given in $4.  It is remarkable that it can 
be derived without any calculation, once the symmetry (T*) is  given. We now discuss 
some algebraic consequences of the symmetry of the roles played by the pairs I * ,  
K * ,  which reflect the symmetrical nature of (T*) itself. 

Let us denote for simplicity by (a, p), (a*, p*) the two RI pairs, and rewrite the 
solution (5.3) in the form 

(5.5) 

in order to have notation consistent with that of $4.1. Equation (4.6) thus reads 

a*-p* 
a-p ’ 

t=----- 

which clearly exhibits the essential property (t* = l / t )  characterizing the symmetry 
(T*). Our formulae of $4.1 also involve the primitive f o f f ,  and higher-order 
primitives as well, such as F = j f d a ,  @ = JFda .  What are the transformed 
quantities f*, F*, @*, . . . ? The answer is, as f = j a* da, 

f* = Jada*, 
or, integrating by parts, 

In the same way, the quantity associated with F(a)  5 j f da is F* = ff* da*, and 
hence 

f* = a f - f .  (5.6) 

F * = -  2 ‘j f 2da++af2-ff (5.7) 

(F* and G* have already been introduced independently through (4.12)). Similar 
results hold for g * ,  G*, etc. versus the characteristic coordinate p, 
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Formula (5.7) accounts for the occurrence of the seemingly higher-order nonlinear 
terms j f2da ,  in the expression (4.11) for the position coordinate r ;  their 
presence is in fact necessary in order to make that expression manifestly symmetrical, 
that is to say, in order that 

( a * - p * ) ~ *  = - (a-p)r ,  
as required by (3.21). 

It should be noted that the above results ($5.1) are general and apply independently 
of the form of entropy distribution; reference to the results of $4.1, which hold in 
the isentropic case, was made for illustrative purposes only. 

To summarize, we have shown the following: first, the data of one single RI  is 
sufficient in order to obtain the solution (5.3); secondly, the most natural way of 
expressing the general solution is in terms of two pairs of variables (a ,  p;  a*, p*) which 
occur in a completely symmetrical way. The first property indicates the crucial 
importance of obtaining Riemann invariants in more general (i.e. non-isentropic) 
situations ; the second property should, independently, constitute a powerful tool in 
the search for new cases of integrability. 

5.2. An extension of the Riemann invariants to non-isentropic $ow 
In addition to the isentropic case, we can derive pairs of Riemann invariants for the 
case where b = 3y- 1 (for all y ) ,  and thus obtain formal solutions of the form (5.3); 
we will treat here the case y = 3 ( b  = 8). 

The simplest RI-pair is obtained by application of operator (T) to the original 
Riemann invariants w k c, namely 

If = v*c= M(w+c)-17. (5.8) 

The associated pair is, by the symmetry (T*), 

K+ = M[(w+c)t-r]+17*, 

or, taking account of the identity (3.24), 

K* = I f t + ~ .  (5.9) 

The above quantities have no explicit expression in terms of well-defined physical 
variables, and are only defined through their differentials. It is thus interesting to  
show that other invariants may be constructed, which are explicit. We propose the 
following solution : 

which reads explicitly 4 

(5.10) 

(5.11) 

The pair associated by the transformation (T*), however, does not constitute a new 

T*[L*] = l /L*,  (5.12) 

as If,  K* are merely exchanged by the symmetry. It is still possible to obtain an 
independent pair which is explicit, e.g. 

invariant; we have, indeed, from the definition (5.10) 

(5.13) 
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Let us remark that, in the notation developed in $5.1, the following identifications 
hold 

(5.14) 

and similar identifications hold for the second members of each pair ( I - ,  K - ,  etc.). 

(5.3). 
The invariants L* , S k  can be used for expressing the general solution in the form 

6. Conclusions 
The present work constitutes a preliminary study of the symmetry properties of 

the one-dimensional Euler equations for adiabatic gas flow. Through considerations 
of scale invariance of the equations of classical mechanics, we have been led to 
discover two hidden symmetries, here denoted by (T), (T*), whose essential properties 
are that M goes over into 1/M, and t into l/t respectively,t where M is the 
Lagrangian mass coordinate and t the time coordinate; these two symmetries are 
susceptible to an interpretation at the microscopic level where the fluid is viewed as 
a many-particle system (see $2.2 and Gaffet 1981, $11.1). 

The symmetry (T) affects the shape of the entropy distribution, a property that 
enabled us to derive new general solutions of the Euler equations starting from the 
already-known isentropic solutions. The solutions that we presented concern the cases 
where the entropy distribution is a power law of index b = 3y- 1 (see (2.15) for the 
definition of b ) .  

Even though the new solutions are restricted to that particular shape of entropy 
profile, it  should be remembered that the domain of applicability of the two new 
symmetries themselves covers all functional forms of entropy distribution. 

The fact that the symmetry (T*), on the other hand, does not affect the entropy 
distribution of the fluid makes it a Backlund transformation, from which integrability 
of the Euler equations might result. That possibility receives support from the 
existence of our new solutions, which shows that cases of complete integrability do 
indeed occur. In  addition the new solutions, derived by means of transformation (F), 
show that - at least in some cases - the mathematics of isentropic and non-isentropic 
flow are equivalent. This certainly was an unexpected result. 

We have also shown that, owing to the existence of the Backlund transformation 
(T*), the determination of a ‘Riemann invariant’ is a sufficient condition for 
integrability, and that the general solution assumes the form of (5.3). We show that 
Riemann invariants may be explicitly constructed even in non-isentropic cases, and 
at least in the case of an entropy profile of the form (2.16), to which our new solutions 

I n  a forthcoming paper, we intend to discuss the symmetries of the Euler equations 
more thoroughly, and in particular we introduce a third symmetry that relates the 
flow of two gases with different adiabatic index ( y , y ’ ) .  Like the first two, that 
symmetry applies independently of the form of entropy profile. 

apply. 

t More generally, M (respectively t )  may be transformed into an arbitrary homographic 
function of M (or t )  of the general type M’ = (a, M + a l ) / ( b o  M +  bl). 
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